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An analytical approach is developed to consider confined motion of a charged microparticle within
the Paul trap (an electrodynamic levitator trap) in an atmosphere near the standard temperature and
pressure. The suggested approach is based on a second-order linear stochastic differential equation
which describes dampled microparticle motion subjected to the combined periodic parametric and ran-
dom external excitations. To solve this equation a new ansatz is developed. This ansatz is a generaliza-
tion of the Bogoliubov-Krylov decomposition technique, which is usually used to reduce the order of a
differential equation. The solution is obtained in the long time imaging limit by applying the Bogoliubov
general averaging principle. In spite of the second-order form of the initial stochastic differential equa-
tion, the microparticle motion can be understood as a one-dimensional Markov process. Comparison in
the long time imaging limit of the calculated data obtained from the analytically derived expression for
the standard deviation of confined microparticle stochastic motion with the experimentally obtained
data demonstrates asymptotic agreement for regions where the dimensionless parameter « is much less
than 1 (k<0.005). Simple extremum analysis of the expression obtained for the standard deviation re-
veals that for the particular case of a large drag parameter @ (a >>8V12) there is a minimum in the stan-
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dard deviation which is only a dependent.

PACS number(s): 02.50.—r, 85.70.Nk

I. INTRODUCTION

At present spectroscopy of an electrodynamically
confined microparticle is a rapidly growing field. In-
frared (1], fluorescence [2,3], Raman [4], and photoemis-
sion [5] spectroscopies of such microparticles have been
demonstrated. There has been a great deal of attention
paid to the dynamical limitations in confinement of indi-
vidual subatomic charged particles in the Penning traps
[6,7] and of atomic ions in the Paul traps [8,9] in vacuum.
However, corresponding studies of trapping and levita-
tion of a charged microparticle within the Paul trap [an
electromagnetic levitator trap (ELT)] in an atmosphere
near standard temperature and pressure (STP) [10,11]
have received little attention. Experimental and numeri-
cal analysis of stability in trapping was performed in
[11,12]. In these papers the numerical analysis of solu-
tion stability of the standard Mathieu equation with
respect to the measurable experimental parameters was
given.

Recently the ELT has been successfully applied to the
study of nucleation and crystallization [13,14] phenome-
na in supersaturated solutions. The ELT confined drop-
lets of supersaturated solutions give a unique opportunity
to study homogeneous nucleation and crystallization
since there is no container in the ELT experiments. This
provides an opportunity to achieve the very high solute
supersaturation inside of the containerless levitated drop-
let.
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In Ref. [15] the problem of dynamical confinement of
an electrically charged microparticle in the ELT in an at-
mosphere near STP has received a new level of treatment.
It was suggested to include thermally induced fluctua-
tions of the trapped microparticle located near the ELT
null point. Furthermore, the effect of these fluctuations
on long term imaging was investigated. Thus, the prob-
lem of confinement in an atmosphere near STP necessi-
tates a stochastic approach. As a result of the work [15],
one can state that the motion of an electrically charged
microparticle in the ELT is governed by an external para-
metric periodic force in the presence of an additional
drag force and broadband random external excitation. It
was demonstrated in Ref. [15] that the last two forces
should always come together due to the fluctuation-
dissipation theorem [16].

In spite of the significant interest paid to dynamics of
the ELT confined microparticles during the last ten
years, there is still no comprehensive analytic solution to
the problem. In this paper an attempt to build up such a
comprehensive analytic solution is presented. This at-
tempt consists of an analytical description of the damp-
ing motion of the ELT confined microparticle in an atmo-
sphere near STP. In the particular case under considera-
tion the confined microparticle damping motion is sub-
jected to the simultaneous action of two external excita-
tions: periodic parametric and broadband random. In
Sec. II we will introduce and define an equation describ-
ing the confined microparticle stochastic motion. In Sec.
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III an ansatz will be developed to solve this equation.
The ansatz is a generalization of the Bogoliubov-Krylov
decomposition technique [17] which is usually used to
reduce the differential equation order. The equation solu-
tion is obtained in a long time imaging limit (i.e., aver-
aged over many cycles) by applying the Bogoliubov gen-
eral averaging principle [18]. In Sec. IV a summary and
conclusions will be presented. These will include the
derivation and analysis of the autocorrelation function
and the standard deviation of the microparticle confined
stochastic motion. The analysis performed in Sec. IV will
be accomplished by comparison to the analytically de-
rived results for standard deviation with the experimen-
tally obtained data.

II. EQUATION FOR THE ELT CONFINED
ELECTRICALLY CHARGED MICROPARTICLE

A typical trap for microparticle experiments is shown
in Fig. 1. A micrometer-sized particle is charged and in-
jected into the ELT either through a hole in the top elec-
trode or through the side (as shown) using a single parti-
cle injector such as an on-demand jet [3]. The ELT con-
sists of three electrodes. The top and bottom electrodes
are hyperboloids of revolution spaced by 2z,, and the
center electrode is a torus having a hyperbolic cross sec-
tion [9]. The time varying voltage V| cos(wt) is applied
to the torus and, relative to the top and bottom of the
electrode’s interior, a nearly perfect oscillating quadru-
pole potential ®(p,z;t) is produced:

2_ 2
D, (p,z;t)=V, %——ZZTZZL cos(wt) , (1)
0

where p is the cylindrical coordinate (p>=x2+y2). In
addition, a constant voltage V. is divided equally be-
tween the top and center, and center and bottom elec-
trodes in order to produce a static interior potential

Particle
+ \{1 2
/ c
Charging
Electrode
V1 cos(mt)
- VdC/Z

FIG. 1. Hyperbolic electrodynamic levitator trap (Paul trap)
for microparticle experiments. The trajectory shown is the
simulation of the electrically charged microparticle injected into
the N, atmosphere at STP. This simulation corresponds to the
following dimensionless drag and drive parameters: a=3.0 and
B=3.28, as they are defined in Eq. (6).
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®..(p,z). This potential balances gravity at the ELT null
point.

A spherical electrically charged microparticle injected
in a gaseous atmosphere is pulled to the ELT center by
alternating gradient forces as illustrated in Fig. 1. The
ELT used in our experiments is modified to eliminate
stray static fields at its null point. Therefore, in the ab-
sence of fluctuations in the microparticle location and
with the microparticle weight balanced, the dynamic
equation describing microparticle motion around the
ELT null point can be given by the following expression
(second Newton’s law):

dr _
dt

dn
dr?

+f qE,. =0, (2)

where m and g are the microparticle mass and electric
charge, respectively, r is the particle radial position vec-
tor, and f is the Stokes drag coefficient. In our experi-
ments we are principally interested in viewing the parti-
cle from the top (x-y plane) or the side (e.g., z-x plane)
directions. Equation (2) easily separates into similar in-
dependent equations along the z axis and is perpendicular
to it. We restrict our interest for the moment to the
motion along the z axis for which the following dynamic
equation can be derived from expression (1) and Eq. (2):

dz(t) _ 9"1

dt 2(2)

d%z(1)
m

i cos(wt )z(t)=0 . 3)

+f

This equation has the form of the Mathieu equation with
damping. In a region of stability, z(#) damps exponen-
tially [19]. This means that the particle eventually settles
to the ELT center and does not move. However, it is
easily observed in experiments that the particle does not
settle to rest but randomly moves around the ELT null
point [15]. This means that Eq. (3) is not complete and
should be supplemented with a random source term that
describes fluctuations in the microparticle location
around the ELT null point. One can come to the same
conclusion from the fluctuation-dissipation theorem [16]
which states that the introduction of a dissipative force
(i.e., of drag) requires simultaneous introduction of the
corresponding random force R (¢) in the form of a source
term. Thus, Eq. (3) should be rewritten in the form

d’z(t) | ,dz(t1) Vi -
m i’ +f ar 2 cos(wt)z(t)=R(1) . 4)

This equation defines time evolution the confined micro-
particle vertical coordinate z =z (t) as a random process
subjected to periodic parametric excitation [15]. Let us
consider in this paper the particular case when the ran-
dom process z(t) is the Markov process (the process
without an after effect). From this it follows that the ran-
dom force R (¢) can also be defined as the Markov pro-
cess. Usually, for simplicity, the additional restriction
that the Markov process R () is the stationary zero-mean
d-correlated one is imposed. Therefore, the process R (¢)
acquires a sense of the stationary zero-mean white noise
which can be completely characterized by the following
one-time probability P,(¢#) and two-time conditional
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probability P,(t,,t,) (i.e., by the fluctuation-dissipation
relations),

Pi()=(R(1))=0,

(5)
Py(t,,t,)={(R(t,)R(t,))=028(t,—1,) ,

where ( ) denotes the ensemble average and 02=2k, Tf
is the white noise variance [16].

Introducing the new variable z(7)=z[wt?/(2Q)], Eq.
(4) can be rewritten in the following form:

d?z'(1) dz'(t) 5 "oy — 2
2 +af) i BQ* cos(2Q7)z'(1)=Q°F(7) ,
(6)
|4
a=2L, p= uld ,
mo m(zyw)?
z'(1)=z i ]=z(t), f(‘r)=-L2R 207
mow o

In Eq. (6) we have introduced the dimensionless drag a
and drive B parameters together with the new dimension-

dz (1)

dr

d?z(7) ta dzy(1) +20
a? O dr

aQz,(7)+

sin(2€7)+

less independent variable r=wt /(2€)), where () is the ar-
bitrary dimensionless small parameter.

III. SOLUTION OF THE EQUATION
FOR THE ELT CONFINED
ELECTRICALLY CHARGED MICROPARTICLE
IN THE LONG TIME IMAGING LIMIT

We will look for a solution of Eq. (6) in the form
z'(1)=2z4(7)+2z,(7)cos(2Q7) +2z,(7)sin(2Q7) . (7

Let us assume that there is the following expression for
the derivative dz'(7)/d:

' dzy(T)
Mzi_}_zﬂ[—zl(ﬂsinuﬂﬂ

dr dr
+z,(7)cos(2Q7)] . (8)

This expression for dz’(7)/dt can be correct if and only
if the following condition is satisfied:

dzl(T) dZZ(T)
cos(2Q7)+
dr

Now let us substitute expressions (8) and (9) into Eq. (6):

sin(2Q7)=0 . 9)

de( 7')
cos(2Q7)

aQlz,(7)+

—Q2{Bzy(7)cos(2Q7) +[2,(1)c0s(2Q7) + 2, ()sin(2Q7) ][4+ B cos(227) ]} =Q*F(7) . (10)

It is understandable that the nonoscillating and oscillating terms in the above equation (10) should be compensated in-
dependently of each other. This necessitates dividing Eq. (10) into two equations containing the nonoscillatory and os-

cillatory terms, respectively, according to the scheme:

dzy(7) dzy(7)
—1 2 =02
PR al—- Bz (1) =Q°F(7),
dz\(7 | . dzy(1)
20— {aQz(7)+ sin(2Q7)+ |aQz,(7)+
dr dr

—Q*z,(7)[4 cos(2Q7)+ 1B cos(4Q7) ] +2,(7)[4sin(2Q7) + 1 Bsin(4Q7) ]} = BO? cos(2Q7)zy(T) .

(11a)

cos(2Q7) )

(11b)

Following the procedure first suggested by Bogoliubov and Krylov [17], Eq. (11b) can be split into two equations for the
derivatives dz,(7)/dt and dz,(7)/d in such a way that condition (9) imposed on these derivatives is satisfied:

dzl(‘r)
2 =2Q05in(2Q7)G[z,(7),z,(7); Q7] ,
d22('r)
I =—20cos(2Q7)G[z,(7),2z,(7); Q7] ,
where

G[z,(7),z5(7); Qr]=—2z,(7)

—2z,(7)

cos(20r)+ Zsin(207)+ gcos(4ﬂ'r)

B sin(4Q7)

sin(2Q7)— %cos( 2Q7)+ n

(12a)

(12b)

B
4

zo(7T)cos(2Q7) .
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It is worthwhile to note that the second-order differential
stochastic equation (11a) together with the first-order or-
dinary differential equations (12a) and (12b) represent an
exact decomposition of the initial equation (6). This
decomposition constitutes our ansatz for the solution of
Eq. (6) and is a generalization of the Bogoliubov-Krylov
decomposition procedure [17] which is usually used in
nonlinear problems to reduce the differential equation or-
der.

We are interested in a solution of Egs. (11a), (12a), and
(12b) corresponding to the long time imaging limit (i.e.,
averaged over many cycles). To find such a solution one
can use the general averaging principle by Bogoliubov
[18]. According to this principle, for 2Q—0 the solu-
tions z,(7) and z,(7) of system (12a) and (12b) in the in-
terval of the time of order O(1/(2())) can be approximat-
ed uniformly and arbitrary close by solutions of the fol-
lowing system of equations:

dz, (1)
dr

where

=20'Gl,av[zl(7-)122(7)] ’ (138)

Giav[z1,(1),25(7)]= }imoiT fongsingG[z,(1'),22(1');5] ,

dz,(1) (130)

dr

where

==20G,,,[z,(1),z,(7)],

Grul21(M)2a(n)] = lim = [T cosE Gz, ()2,()3€] -

In these equations T=m/Q— o with 2—0. The above
general averaging principle by Bogoliubov constitutes the
widely used averaging principle in nonlinear mechan-
ics [17,18]. This principle was proved by
Bogoliubov under quite generally two main assump-
tions: functions  sin(2Q7)G[z,(7),z,(7); Q7] and
cos(2Q7)G[z,(7),z,(7); Q7]; (a) should be bounded and
(b) should satisfy the Lipschitz condition [16,17] with a
constant which is independent of Qr. (Different ap-
proaches to prove the Bogoliubov general averaging prin-
ciple can be found in [20,21].) Together the conditions (a)
and (b) mean that there exists the following inequality:

|G[z,(1),2,(1); Q7] —G[z,(7),2,(7); Q7' ]|

a B

<(20)’max 4

2
S |z, (1) —z, ()],

n=1

1,

where the notation | | means the absolute value and the
function max(1,a/2,8/4) makes a choice for the max-
imum between 1, a /2, and B/4.

Thus instead of a system of equations [(12a) and (12b)]
we obtain for the limiting case of long time imaging the
following system of truncated equations:

dzl(’r) _ a 1

ar =-20 —4“21(T)+i22(7') , (14a)
dz,(T) a B

dr =—-20 IZZ(T)—%ZI(T)—EZO(T) . (14b)

These two first-order ordinary differential equations to-
gether with the second-order stochastic differential equa-
tion (8a) provide a description of the ELT confined elec-
trically charged microparticle for the limiting case of
long time imaging. It is straightforward to obtain solu-
tions for the system of equations [(8a), (14a), and (14b)] in
the form of the Fourier integrals,

A(€)+d,
ANE)+ A(E)d,+d,
(15a)

2 (-] . -—
zo(T)= % [ wdge‘ng(g)

1
AUE)+ A(E)d, +d,

’

4 0 . —
z,(1)= —B—sﬂﬂ— [ agemF©

(15b)

al)
i)
i& )

AUE)+ A(E)d, +d,

b

3 0 P
an=EY [ ageeFe)

(15¢)
where

A(E)=—E+iaQE ,
2

dl =QT(a2+4) N

d,=HBO*)?.

In the above expressions (15a)—(15¢c) F(£) is the random
function F(7) Fourier image. As it follows from expres-
sions (5) the fluctuation-dissipation relations for the ran-
dom function F(7) Fourier images F(£) can be given in
the form

(F(&)=0,
5 (16)

(FleFg) =286, +6,) ,
where T =80?%/(m2w%).

IV. SUMMARY: AUTOCORRELATION FUNCTION
AND STANDARD DEVIATION OF THE ELT CONFINED
ELECTRICALLY CHARGED MICROPARTICLE
IN THE LONG TIME IMAGING LIMIT

The autocorrelation function W'(r,7+p) which defines
the conditional probability for the Markov process z'(7),
introduced in Sec. II, can be given by the expression

W'(r,7+p)=(z'(1)z'(t+p)) . a7

As has been stated in the previous section, we are in-
terested in the limiting case which corresponds to long
time imaging. It follows from the Bogoliubov general
averaging principle [17,18] that in this limiting case the
autocorrelation function W’'(7,7+p) can be approximat-
ed uniformly and arbitrary closely by its average W'(p)
over the time interval [0, T']:

4 =i _.l_. T ’
W(p)= lim T fo drW'(r,7+p) . (18)
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Carrying out the calculations prescribed by the relations
(17) and (18) in the closed form is a straightforward but
quite cumbersome procedure. To simplify calculations
and the final expression for the function W'(p) it is of use
to introduce the following small parameter «:

__ 38
: (a®+4)

This parameter is much less than one when
B<< 24+a2/2V2. Substituting the expression for z'(7)
obtained in the previous section [see relations
(15a)-(15c¢)] into Eq. (18) for the function W’(p) and car-
rying out the calculations prescribed above one can
obtain the averaged autocorrelation function Wi(t)
=W'wt/2Q)=W'(7) as the following expansion with
respect to the small parameter «:

r

W(t)=
2[AXa,k)—A3a,k)]
X[Qola,k;0t)+Q(a,k; 0t )cos(wt )
+0,(a,k; 0t )sin(wt)] , (19)
where
r 1 —(wt /2)A,(a,k)
Qola,k;0t)= A [ [;‘I’A"‘%AZK e 2
—%(I-F%Ax)e —(mt/Z))»l(a,K)]
+0(k?),
r 24 +1 —(wt/2)Ay(a,x)
. —__T 4+ == - - 2
0.(a,k;0t) 8 1 5K }e
_ 24 —1 Ke—(wl/Z)Al(a,K) +0(K2) ,
4
Qz(a,K;wt)= FK2(e—(wt/Z)Al(a,K)__e—(wt/Z)AI(a,x))
16a

+0(i?) .

The parameters introduced above, A(a,k) and Ay(a,k),
have the form

Ala,K)=a 1—%K +0(?) ,

Aya, k)= EZAK+O(K2) ,

where 4 =(a?+4)/(8a?).

It is straightforward to obtain the second moment
W(0) of the microparticle confined stochastic motion
within the ELT,

r

2[AKa, ) —A3(a,k)]
X[Qola,k;0)+Q;(a,x;0)] , (20)

Ww(0)=

where the expressions for Q;(a,k;0) and Q,(a,k;0) are
given by the relation (19) definitions. The standard devia-

tion X of this motion is related to the second moment
W (0) as Z2=W(0).

A simple analysis of expression (20) leads to the follow-
ing conclusions:

(a) The function W (0) grows as 1/k when « tends to
zero. This growth occurs either as ? approaches zero or
when a? goes to infinity in such a way that their particu-
lar combination given by the parameter k remains much
less than one. This continues until the nearest region of
instability is reached and microparticle is not confined
anymore.

(b) The function W(0) slowly grows as k when the
small parameter « tends to one. It is worthwhile to note
that the small parameter k can go to one either by in-
creasing 82 or by decreasing a’.

(c) There is the well defined minimum W (0) of the
second moment (square of standard deviation) W (0) with
respect to the parameter «.

(d) For the case of the large and fixed drag parameter a
(@, >>4) expressions for the second moment minimum
W 4in(0) and corresponding to this minimum drive pa-
rameter =, acquire the very simple forms. Their
dependences on the drag parameter a in this particular
case are given by the following simple expressions:

e
Won(0) = 14+ 2B o1 L1
8a a a
s @1
2a 1
= 140 |~
Bmm (13)1/4 a |

Relations (21) give the interesting possibility of finding
the minimum possible second moment W ; (0) and the
corresponding drive parameter B, for the specific value
of the drag parameter ¢ when two strong inequalities,

a?>>4, K|B=Bmv << 1

are satisfied simultaneously. This takes place when
a>>8V12. It is noteworthy that, as follows from (21),
the driving force increase does not necessarily lead to a
reduction of the standard deviation X which has the well
defined minimum 2 _; at B=pf,,;,. More complicated ex-
pressions for X, and for the corresponding B,,;, for the

other, free of the restrictive condition a>>8\/1_2, cases
can be also found by analyzing expression (20). The pres-
ence of the minimum =, = W./2(0) in the standard de-
viation = dependence on the drag parameter a gives a
unique possibility to improve spectroscopic measure-
ments of the ELT confined electrically charged micropar-
ticle in an atmosphere near STP. Thus by varying the pa-
rameter a (for example, by changing the microparticle
size) one can considerably reduce the thermal noise effect
on motion of the ELT confined microparticle.

Figure 2 is the comparative plot of the analytically ob-
tained standard deviation 3, along the y axis and the ex-
perimentally obtained 2, ., data. Analytical results for
the microparticle confined stochastic motion along the y
axis can be easily restored from the same results obtained
with respect to the z axis. The only difference in the
analytical description of these motions is that the drive
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FIG. 2. Comparative plot of the analytically derived 2, and
experimentally obtained 3, ., results for the standard devia-
tion of the microparticle confined stochastic motion along the y
axis [k, =8B2/(a*+4)*=2B%/(a’+4)?]. The comparison has
been performed for the relatively large value of the drag param-
eter @=45.37>>8V'12 in an atmosphere near STP (temperature
is 294.0 K).

parameter B, along the y axis is half of the same parame-
ter =P, along the z axis [B, =P, /2, see expression (1)].
This comparison has been performed for the relatively
large value of the drag parameter a=45.37>> 8V12 in
an atmosphere near STP (the temperature was 294.0 K).
There is a fine coincidence between the experimentally
obtained data and the analytical results for small values
of the parameter k (k <0.005). However, the further in-
crease of k (0.005<k=<1) leads to a considerable
discrepancy up to 600% between experimental and
analytical results. To address and resolve this problem
the following model equation is suggested:

d%(t) | .dz(t) Vi _
m +f an 22 cos(wt+¢)z(t)=R (). (22)

In Ref. [15] Eq. (4) was substituted by Eq. (22). In this
equation the quantity ¢ is the random initial phase. In-
troduction of this phase is physically justified since it ac-
counts for the randomly occurring initial collisions be-
tween microparticle and molecules of the ELT atmo-
sphere. All numerical results obtained in [15] are based
on the Green function A ¢(cot/2,wt’/2)Eh ¢('r,'r’) associ-
ated with Eq. (22). It has been concluded in [15] that an
assumption concerning the time-shift invariance of the
Green function h4(7,7') can be approximately justified in
the long time imaging limit. Having this assumption in

mind it is straightforward to demonstrate that in terms of
the Green function hy(7,7’) the second moment W(0)
(standard deviation squared) of the microparticle stochas-
tic motion can be represented in the form,

802 ®
wo=2( [ d7h3<f,o>>¢ . 23)

In this expression { ), denotes averaging over the ran-
dom initial phase ¢. Numerical analysis of the standard
deviation T=W1!%0) given by expression (23) has
demonstrated much better agreement with experiment
[15] in the region where the current theory shows a
discrepancy. This difference is surprising since one does
not expect the initial random collision to have a long
term influence on the microparticle motion. Thus, an
analytical solution for the model including a random ini-
tial phase is required together with further investigations
of the present model.

Comparison between analytical results obtained in this
paper and experimental data for the standard deviation
has been performed for large values of the drag a and
drive B parameters (8= 51.56, a=45.37 for k=2 0.005). It
is quite likely that for such large values of the parameters
a and B energy dissipation in the system under considera-
tion is nonlinear. Since such an effect may be anticipated
in future experiments and almost certainly exists to some
extent in experiments at these extremes it is useful to ela-
borate on the form which the nonlinear theory will take.
The nonlinear energy dissipation means that the linear
second-order stochastic differential equation (4) describ-
ing stochastic motion of the ELT confined electrically
charged microparticle should be substituted by the non-
linear equation of the following kind:

|

qv, _
————cos(wt)z(t)=R(1) .

Zo
In this equation the function U{z*(t)+ f,[dz(t)/dt]*} is
continuous and depends only on one variable
zXt)+f,[dz(t)/dt}?, f, and f, are the corresponding
drag parameters. Such types of functions are widely used
to characterize energy dissipation in the nonlinear
mechanical systems subjected to internal and external ex-
citations [16,17]. The model of the ELT confined electri-
cally charged microparticle, the stochastic motion of
which is described by the nonlinear equation given above
is at present under consideration and will be reported in
later work.

Thus, in this paper an attempt to develop a theoretical
approach describing the ELT confined stochastic motion
of the electrically charged microparticle is performed in
the long time imaging limit for the particle case when (a)
energy dissipation in the system microparticle plus atmo-
sphere is linear and (b) the random source process R (t)
corresponding to thermal noise is the stationary zero-
mean white noise. It has turned out from the ansatz sug-
gested in this paper [see Eq. (11a) and expressions (14a)
and (14b)] that for the particular case of long time imag-

d*z (1)
m
dt?

dz (1)
dt

dz(t)
dt

+£, Ulzt)+f,
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ing the microparticle confined motion can be understood
over a specific range as the one-dimensional stationary
zero-mean Markov process. This takes place in spite of
the second order of the initial stochastic differential equa-
tion (4).
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